Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 141次   下载 221 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于子图采样的大规模图对抗性攻击方法
高昕1, 安冬冬1, 章晓峰2
1.上海师范大学 信息与机电工程学院, 上海 201418;2.上海新致软件股份有限公司, 上海 200120
摘要:
为提高对抗性攻击在大规模图上的攻击效率,提出了基于子图采样的对抗样本生成方法. 该方法通过引入PageRank、余弦相似度及K跳子图等技术,提取与目标节点高度相关的子图,在大规模图上缓解了计算梯度效率较低的问题,在降低被攻击模型准确性的同时提升了攻击的隐蔽性. 实验结果表明: 所提出的对抗性攻击方法与基于梯度攻击的GradArgmax算法相比,在Cora数据集上提升了30.7%的攻击性能,且在Reddit大规模数据上能够计算GradArgmax算法无法计算的攻击扰动.
关键词:  图神经网络  对抗性攻击  子图提取算法
DOI:10.3969/J.ISSN.1000-5137.2024.02.004
分类号:TP181
基金项目:国家自然科学基金青年基金(62302308),上海市青年科技英才扬帆计划(21YF1432900)
Subgraph sampling-based adversarial attack method for large-scale graphs
GAO Xin1, AN Dongdong1, ZHANG Xiaofeng2
1.College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China;2.Shanghai Newtouch Software Co., Ltd., Shanghai 200120, China
Abstract:
A subgraph sampling-based adversarial example generation method was proposed to enhance the efficiency of adversarial attacks on large-scale graphs. PageRank, cosine similarity, and K-hop subgraphs were employed to extract subgraphs highly relevant to the target node in this method, alleviating the issue of low gradient computation efficiency in large-scale graphs. The stealthiness of the attack was also increased while reducing the accuracy of the attacked model. Experimental results showed that attack performance was improved by 30.7% on the Cora dataset by this adversarial attack method compared to the GradArgmax algorithm, and attack perturbations on large-scale like Reddit dataset could be computed which the GradArgmax algorithm could not achieve.
Key words:  graph neural network  adversarial attack  subgraph extraction algorithm