Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 142次   下载 306 本文二维码信息
码上扫一扫!
分享到: 微信 更多
恶劣天气下基于锚点的多尺度融合车道线检测及优化方法
邓文博, 刘翔鹏, 安康
上海师范大学 信息与机电工程学院, 上海 201418
摘要:
针对黑夜和大雾天气下车道线检测的问题,在数据预处理阶段采用改进的自适应伽马变换对过暗或漂白的图片进行增强,并利用暗通道先验法对大雾场景下的图像进行数据增强,从而降低干扰. 在特征提取阶段,采用改进的rotation forest block(RFB)网络提取车道线的特征信息,并通过基于锚点的分类方法实现了快速而准确的车道线检测功能.
关键词:  车道线检测  数据增强  rotation forest block (RFB)  暗通道先验法  目标检测
DOI:10.3969/J.ISSN.1000-5137.2024.02.003
分类号:TP18
基金项目:上海师范大学一般科研项目(SK202123)
Multi-scale fusion lane detection and optimization method based on anchor points in adverse weather conditions
DENG Wenbo, LIU Xiangpeng, AN Kang
College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China
Abstract:
The challenges of lane detection in night time and foggy weather scenarios were addressed and researched in this paper. In data preprocessing stage, an enhanced adaptive gamma transform was applied to enhance images that were too dark or overexposed. Additionally, the dark channel prior method was employed to augment image data in foggy conditions, reducing interference from heavy fog and low-light nighttime scenes on lane recognition. For feature extraction, an improved rotation forest block (RFB) network was utilized to capture lane features effectively. Furthermore, a rapid and accurate lane detection effect was achieved through an anchor-based classification approach.
Key words:  lane detection  data augmentation  rotation forest block (RFB)  dark channel prior method  object detection