Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1188次   下载 1181 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于深度卷积网络与空洞卷积融合的人群计数
盛馨心, 苏颖, 汪洋
上海师范大学 信息与机电工程学院, 上海 200234
摘要:
利用空洞卷积设置不同空洞率,得到不同感受野的特点,提出一种基于深度卷积Visual Geometry Group19(VGG19)和空洞卷积相融合的结构.所采用的结构不受输入图像尺寸以及分辨率影响,通过设置锯齿状空洞率,扩大网络的感受野,在保持分辨率良好的情况下,可以较为精确地定位目标,提高检测准确性.经验证,该算法在Shanghai-tech标准数据集上具有较高的实验准确率.
关键词:  人群计数  Visual Geometry Group19(VGG19)  空洞卷积  Shanghai-tech数据集
DOI:10.3969/J.ISSN.1000-5137.2019.05.003
分类号:TN919.8
基金项目:
Crowd counting based on fusion of deep convolutional network and dilated convolution
SHENG Xinxin, SU Ying, WANG Yang
College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract:
A combined structure based on Visual Geometry Group19(VGG19) and dilated convolution with different receptive field was proposed for high density crowd counting in the paper.The structure adopted would not be affected by the size and resolution of the input image.By setting the serration dilation rate,the network receptive field was expanded,and the target could be accurately localized without any loss of resolution,which improved the accuracy of detection.Finally,the experimental results showed that the algorithm had higher accuracy on the standard data set of Shanghai-tech.
Key words:  crowd counting  Visual Geometry Group19(VGG19)  dilated convolution  Shanghai-tech data set