Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1172次   下载 1220 本文二维码信息
码上扫一扫!
分享到: 微信 更多
协同过滤算法的优化研究
熊波元, 陈军华
上海师范大学 信息与机电工程学院, 上海 200234
摘要:
对协同过滤算法中用户相似性计算方面进行优化,在计算用户相似性的公式中添加用户兴趣偏差度作为权重,以提高相似性计算的准确性.通过实验对改进的算法进行了验证,结果表明改进的算法提高了推荐系统的准确度.
关键词:  个性化推荐  协同过滤  相似性
DOI:10.3969/J.ISSN.1000-5137.2018.05.015
分类号:TP391
基金项目:
Research on collaborative filtering algorithm optimization
XIONG Boyuan, CHEN Junhua
College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract:
The calculation of user similarity was optimized. By adding the user interest bias as weight into the formula of the calculation of user similarity, the accuracy was highly improved. The experiment results showed that the improved algorithm could enhance the accuracy of the recommended system.
Key words:  personalized recommendation  collaborative filtering  similarity