Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1349次   下载 1165 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于卷积神经网络的交通标志识别方法
朱永佳, 张静
上海师范大学 信息与机电工程学院, 上海 200234
摘要:
针对卷积神经网络(CNN)在交通标志识别过程中出现的梯度弥散而引起的识别率低的问题,给出了基于改进CNN结构的交通标志识别方法.实验结果表明:该方法能够有效提高识别精度,防止梯度弥散.
关键词:  卷积神经网络(CNN)  交通标志识别  深度学习
DOI:10.3969/J.ISSN.1000-5137.2018.05.014
分类号:TP391.41
基金项目:
Traffic sign recognition algorithm based on improved convolution neural network
ZHU Yongjia, ZHANG Jing
College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract:
For the problem of low traffic sign recognition rate due to gradient diffusion in convolution neural network(CNN), an improved convolution neural network was proposed. The experiment results showed that the improved method could increase the recognition accuracy effectively and prevent gradient vanishing.
Key words:  convolution neural network (CNN)  traffic sign recognition  deep learning