Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1682次   下载 1698 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于联想记忆的Hopfield神经网络的设计与实现
张少平, 徐晓钟, 马燕
上海师范大学
摘要:
介绍了反馈型神经网络Hopfield网络的定义、原理、模型和基本学习规则,并构造了一个用于联想记忆的Hopfield神经网络模型.对实验结果进行分析、比较,实验结果表明:Hopfield神经网络用于数字识别是可行、有效的;该方法较传统神经网络能提高网络的记忆能力和数字识别的正确率;该方法有别于以往的BP神经网络的模式识别,结合一些优化算法,如遗传算法,能对Hopfield神经网络的联想记忆稳态进行优化,增强神经网络的联想记忆能力.
关键词:  Hopfield神经网络  联想记忆能力  数字识别  MATLAB  遗传算法
DOI:
分类号:
基金项目:
Design and implementation for hopfield associative memory neural networks
ZHANG Shaoping, XU Xiaozhong, MA Yan
College of Information,Mechanical and Electrical Engineering,Shanghai Normal University
Abstract:
This paper introduces the definition,principle,model and basic learning rules of feedback neural network,i.e.Hopfield network,and constructs a Hopfield neural network model for associative memory.The experimental results are analyzed and compared.The results show that Hopfield neural network for digital identification is feasible and effective.This method,compared with that of traditional neural network,can improve the network memory capacity and accuracy of digital identification.This method is different from the previous BP neural network pattern recognition,and can optimize associative memory steady-state of Hopfield neural network and enhance the capacity of the associative memory of neural network in combination with some optimization algorithms such as genetic algorithm.
Key words:  hopfield neural network  associative memory capacity  numeral recognition  MATLAB  genetic Algorithm