Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 19次   下载 21 本文二维码信息
码上扫一扫!
分享到: 微信 更多
带状区域中一类抛物方程解的渐近行为
杜文静, 黄鑫宇, 吴俊彦, 修新秀, 袁丽霞
上海师范大学 数理学院, 上海 200234
摘要:
考虑带状区域中具有非均匀无界边界条件的一类拟线性抛物方程.在一定条件下,证明当时间t→∞时,初边值问题的解u趋于无穷.而且,利用零点性质还证明了:对任何x≠0,都有ux(x,t)→∞,即梯度也是渐近无界的.
关键词:  曲率流  拟线性抛物方程  行波解  渐近行为
DOI:10.20192/j.cnki.JSHNU(NS).2024.06.002
分类号:O175
基金项目:
Asymptotic behavior of solutions of a parabolic equations in a band domain
DU Wenjing, HUANG Xinyu, WU Junyan, XIU Xinxiu, YUAN Lixia
Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
Abstract:
We consider a quasilinear parabolic equation in a band domain with inhomogeneous and unbounded boundary conditions. We show that, under certain conditions, the solution u of the initialboundary value problem tends to infinite as t→∞. Moreover, by using the zero number argument we show that for any x≠0, ux(x, t) also tends as t→∞ to infinity, that is, the gradient is asymptotically unbounded.
Key words:  curvature flow  quasilinear parabolic equation  translating solution  asymptotic behavior