摘要: |
考虑带状区域中具有非均匀无界边界条件的一类拟线性抛物方程.在一定条件下,证明当时间t→∞时,初边值问题的解u趋于无穷.而且,利用零点性质还证明了:对任何x≠0,都有ux(x,t)→∞,即梯度也是渐近无界的. |
关键词: 曲率流 拟线性抛物方程 行波解 渐近行为 |
DOI:10.20192/j.cnki.JSHNU(NS).2024.06.002 |
分类号:O175 |
基金项目: |
|
Asymptotic behavior of solutions of a parabolic equations in a band domain |
DU Wenjing, HUANG Xinyu, WU Junyan, XIU Xinxiu, YUAN Lixia
|
Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
|
Abstract: |
We consider a quasilinear parabolic equation in a band domain with inhomogeneous and unbounded boundary conditions. We show that, under certain conditions, the solution u of the initialboundary value problem tends to infinite as t→∞. Moreover, by using the zero number argument we show that for any x≠0, ux(x, t) also tends as t→∞ to infinity, that is, the gradient is asymptotically unbounded. |
Key words: curvature flow quasilinear parabolic equation translating solution asymptotic behavior |