摘要: |
对数凹函数嫡的 $L_p$ Shephard 问题是一类摘的比较问题: 若 ${\Pi}_{p}f \leq {\Pi}_{p}g$, 是否当1≤p<n时,有$\operatorname{Ent}(f) \geqslant \operatorname{Ent}(g)$;当n<p时,有$\operatorname{Ent}(f) \leqslant \operatorname{Ent}(g)$,其中,$\Pi_p f$为对数凹函数f的$L_p$投影体,得到了该问题的部分解答。 |
关键词: $L_p$ Shephard问题 对数凹函数 $L_p$投影体 熵 |
DOI:10.20192/j.cnki.JSHNU(NS).2024.05.001 |
分类号:O186.5 |
基金项目:The National Natural Science Foundation of China (11701373);The Shanghai Sailing Program (17YF1413800) |
|
The Lp Shephard problem on entropy of log-concave functions |
GAO Tian, LI Shuqian, MA Dan
|
Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
|
Abstract: |
In this paper, we introduce the ${L_p}$ Shephard problem on entropy of log-concave functions, a comparison problem: whether ${\Pi}_{p}f \leq {\Pi}_{p}g$ implies that $Ent(f)\ge Ent(g), \; \mathrm{for} \;1 \le p < n$, and $Ent(f)\leq Ent(g), \;\mathrm{for} \; n < p$, where ${\Pi}_{p}f$ is the ${L_p}$ projection body of a log-concave function $f$. Our results give a partial answer to this problem. |
Key words: the ${L_p}$ Shephard problem log-concave functions ${L_p}$ projection bodies entropy |