摘要: |
采用水热法结合空气气氛中的热处理过程,在泡沫镍(NF)表面生长了锰酸钴(CoMn2O4)多级空心纳米球,通过X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)和X射线光电子能谱(XPS)等测试手段对纳米球进行了表征.在三电极电化学测量系统中,0.1Co2+-250电极材料在5 mA·cm-2时的面积比电容高达6 184 mF·cm-2.以0.1Co2+-250为正极,商用活性炭(AC)为负极组装而成的混合超级电容器,在1.6 mW·cm-2时的最大能量密度为0.112 mWh·cm-2.即使在功率密度为16 mW·cm-2时,能量密度仍达到0.064 mWh·cm-2.在2 mA·cm-2的电流密度下,经过10 000次充放电循环后,电容保持了初始值的93%.因其优越的电化学性能和低成本的便捷合成方法,CoMn2O4多级空心纳米球作为电极材料具有重要的应用前景. |
关键词: 锰酸钴(CoMn2O4) 多级纳米空心球 混合超级电容器 电化学性能 面积比电容 能量密度 功率密度 |
DOI:10.3969/J.ISSN.1000-5137.2021.05.009 |
分类号:O646 |
基金项目: |
|
Electrochemical performance of hierarchical hollow CoMn2O4 hanospheres in-situ grown on nickel foam as supercapacitor electrode materials |
GE Zongyun, ZHOU Qingya, GUO Aiping, WANG Zhenhua, HUANG Jinping
|
College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
|
Abstract: |
Hierarchical hollow nanospheres of cobalt manganese oxide(CoMn2O4) on nickel foam(NF) are facilely synthesized by a hydrothermal method and post heat treatment in air, and further characterized by diffraction of X-rays(XRD), field emission scanning electron microscope (FE-SEM) and X-ray photoelectron spectroscopy(XPS). In a three-electrode system of electrochemical measurement, the areal capacitance of 0.1 Co2+-250 electrode material is as high as 6 184 mF·cm-2 at 5 mA·cm-2. The hybrid supercapacitor assembled by 0.1 Co2+-250 as the positive electrode and commercial activated carbon (AC) as negative electrode presents a maximum energy density of 0.112 mWh·cm-2 at 1.6 mW·cm-2. Even at the power density of 16 mW cm-2, the energy density still reaches 0.064 mWh·cm-2. After 10 000 charge/discharge cycles under the current density of 2 mA·cm-2, the capacitance retains 93% of the initial value. With excellent electrochemical performance and facilely cost-effective synthesis, such hierarchical CoMn2O4 electrode material may hold great promise for high-performance supercapacitor applications. |
Key words: cobalt manganese oxide(CoMn2O4) hierarchical hollow nanospheres hybrid supercapacitor electrochemical performance areal capacitance energy density power density |