|
|
|
本文已被:浏览 897次 下载 835次 |
 码上扫一扫! |
|
非本原复反射群G(m,p,n)中的反射序 |
洪飞飞1, 李晶晶2, 王丽3
|
1.上海财经大学附属中学, 上海 200090;2.上海师范大学附属松江实验学校, 上海 201601;3.上海师范大学 数理学院, 上海 200234
|
|
摘要: |
设m,p,n是正整数且p整除m。令G(m,p,n)是非本原复反射群.根据文献介绍了群G(m,p,n)中的一种偏序,称为反射序.文中将研究当1 < p < m时,群G(m,p,n)中的反射序. |
关键词: 非本原复反射群 反射长度 反射序 |
DOI:10.3969/J.ISSN.1000-5137.2021.03.005 |
分类号:O152.3 |
基金项目:The National Natural Science Foundation of China (11971319) |
|
Reflection ordering in the imprimitive complex reflection group G(m, p, n) |
HONG Feifei1, LI Jingjing2, WANG Li3
|
1.High School Affiliated to Shanghai University of Finance and Economics, Shanghai 200090, China;2.Songjiang Experiment School Affiliated to Shanghai Normal University, Shanghai 201601, China;3.Mathematies and Science College, Shanghai Normal University, Shanghai 200234, China
|
Abstract: |
Assume that m, p and n are positive integers, and p divides m. Let G(m, p, n) be an imprimitive complex refelction group. A partial ordering is introduced in the group G(m, p, n), as following reference, which is called the reflection ordering. We will study the reflection ordering in the group G(m, p, n) with 1 < p < m. |
Key words: imprimitive complex reflection groups reflection length reflection ordering |
|
|
|
|