Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 886次   下载 916 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于深度学习的城市流量预测
王梦园1, 翟希2, 王斌1
1.上海师范大学 信息与机电工程学院, 上海 200234;2.上海市城乡建设和交通发展研究院 上海交通信息中心, 上海 200003
摘要:
就所述的长短期记忆(LSTM)模型和DeepST-ResNet模型进行了研究分析,并基于西安滴滴出行的真实数据对相关模型进行对比实验,分析了各个模型的优劣,提出了建立更优模型的思路与展望.
关键词:  交通管理  滴滴出行  时空数据  神经网络  流量预测
DOI:10.3969/J.ISSN.1000-5137.2021.01.017
分类号:TP399
基金项目:
City traffic forecast based on deep learning
WANG Mengyuan1, ZHAI Xi2, WANG Bin1
1.College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China;2.Shanghai Traffic Information Center, Shanghai Urban and Rural Construction and Traffic Development Research Institute, Shanghai 200003, China
Abstract:
In this paper the long-term and short-term memory(LSTM)model and the DeepST-ResNet model were both studied and analyzed. Based on the real data of Xi' an Didi travel, the above models were compared and tested to analyze the advantages and disadvantages of each model according to which a better model was proposed and the preliminary work and preparation was conducted.
Key words:  traffic management  Didi travel  spatiotemporal data  neural network  traffic forecast