Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 919次   下载 1052 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Melnikov函数在含有两个幂零尖点的双异宿环附近的展开式
苗稼乐, 杨俊敏
河北师范大学 数学科学学院, 河北 石家庄 050024
摘要:
考虑未扰Liénard系统=y=-gx),其中deg gx)=7,当该系统分别含有2,3,4和5个奇点时,给出了其所有的不同拓扑类型的相图,并给出了Melnikov函数在含有2个幂零尖点和1个双曲鞍点的双异宿环附近的展开式和得到极限环的条件.
关键词:  极限环  Liénard系统  近哈密顿系统  异宿环  Melnikov函数
DOI:10.3969/J.ISSN.1000-5137.2020.03.006
分类号:O193
基金项目:The Natural Science Foundation of China (11971145); The Natural Science Foundation of Hebei Province(A2019205133)
On the expansion of the Melnikov function near a double heteroclinic loop with two nilpotent cusps
MIAO Jiale, YANG Junmin
School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
Abstract:
In this paper, we give all the different topological types of phase portrait for the unperturbed Liénard system =y, =-g(x) in the case that deg g(x)=7 and the system has 2, 3, 4 and 5 singular points, respectively. We then give the expansion of Melnikov function near a double heteroclinic loop with two nilpotent cusps and one hyperbolic saddle. We also give the conditions to obtain the limit cycles.
Key words:  limit cycle  Liénard system  near-Hamiltonian system  heteroclinic loop  Melnikov function