摘要: |
设H和K为两个Hilbert空间,A∈B(H)和B∈B(K,H)满足ind(A)≤ 1,R(AB)⊆R(B),以及R(B)为闭.给出了等式R(AB)=R(A)∩R(B)成立的一个充分条件,并给出了上述等式不成立的一个反例. |
关键词: 算子值域 Drazin逆 Moore-Penrose逆 |
DOI:10.3969/J.ISSN.1000-5137.2019.05.001 |
分类号:O177.1 |
基金项目:国家自然科学基金(11671261,11971136);上海市科学技术委员会"一带一路"青年科学家基金(18590745200) |
|
A note on the range of the product of two operators |
QIN Mengjie, XU Qingxiang
|
Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
|
Abstract: |
Let H and K be two Hilbert spaces,and let A∈B(H),B∈B(K,H) be two bounded linear operators such that ind(A) ≤ 1,R(AB)⊆R(B) and R(B) is closed in H.A sufficient condition is given under which R(AB)=R(A)∩R(B).Furthermore,a counterexample is constructed such that R(AB)≠R(A)∩R(B). |
Key words: the range of an operator Drazin inverse Moore-Penrose inverse |