Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1219次   下载 1136 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一类不连续非局部分数阶方程多解存在性研究
袁子清
铜仁学院 大数据学院, 贵州 铜仁 554300
摘要:
考虑了一类带有非光滑势的非局部分数阶Laplacian问题.通过一个非光滑的三临界点定理及分数阶Sobolev空间的分析技巧,证明了非局部分数价问题至少存在3个非零弱解.
关键词:  非光滑临界点定理  局部Lipschitz  微分包含  分数阶方程
DOI:10.3969/J.ISSN.1000-5137.2019.03.011
分类号:O29
基金项目:
Multiplicity of solutions for nonlocal fractional equations with nonsmooth potentials
YUAN Ziqing
Big Date College, Tongren University, Tongren 554300, Guizhou, China
Abstract:
This paper is concerned with a class of nonlocal fractional Laplacian problems with nonsmooth potentials. By exploiting an abstract three critical points theorem for nonsmooth functionals, combining with an analytical context on fractional Sobolev spaces, we obtain the existence of at least three weak solutions for nonlocal fractional problems.
Key words:  nonsmooth critical point theory  locally Lipschitz  differential inclusion  fractional equations