摘要: |
研究了分层不可压流体饱和热弹性多孔介质轴对称问题的动力响应问题,基于多孔介质理论(PMT),给出了该问题的数学模型.在空间域内采用微分求积单元法(DQEM)设置离散的控制微分方程、边界条件和连接条件,在时间域内采用二阶向后差分格式处理时间导数.在离散化的初始条件下,运用Newton-Raphson法进行迭代求解,得到各离散点处未知物理量的数值结果.研究表明:该方法有效、可靠,且具备精度较高、计算量较小、数值稳定等优点. |
关键词: 流体饱和热弹性多孔介质 多孔介质理论(PMT) 微分求积单元法(DQEM) 动力学响应 |
DOI:10.3969/J.ISSN.1000-5137.2019.02.004 |
分类号:TU311 |
基金项目: |
|
Dynamic response analysis of axisymmetric problems for layered fluid-saturated thermo-elastic porous media based on DQEM |
YE Dongsheng, ZHU Yuanyuan, WANG Xiaomei, WANG Yushan
|
College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
|
Abstract: |
In this paper,the dynamic response of axisymmetric problem for layered incompressible fluid-saturated thermo-elastic porous media is studied.Based on the porous media theory(PMT),the mathematical model of the problem is given.The differential quadrature element method (DQEM) is used to set the discrete differential equations,boundary conditions and connected conditions on the space domain.The second-order backward difference scheme is used to process the time derivative on the time domain.Newton-Raphson method is used to solve the discrete problem iteratively and get the numerical results of unknown physical quantities at discrete point.The results show that the proposed method is effective and reliable,and it has the advantages of high precision,small amount of calculation,stable value and so on. |
Key words: fluid-saturated thermo-elastic porous media porous media theory (PMT) differential quadrature element method (DQEM) dynamic response |