Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1312次   下载 1854 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于脑电波信号的人体疲劳程度测试模型分析
顾宣宣, 李鲁群, 杜如东
上海师范大学 信息与机电工程学院, 上海 200234
摘要:
针对人体疲劳程度检测问题,采集被测试者的脑电图(EEG)信号,利用阈值小波变换对EEG信号进行消噪处理,提取脑电波中的特征值,分析疲劳程度与特征值的相关性,建立脑电波信号与疲劳程度的数学模型,并用十折交叉验证法来验证该模型的准确率.结果表明:该模型检测人体疲劳程度的准确率可以达到96%以上.
关键词:  脑电图(EEG)信号  疲劳程度  小波变换  数学模型  十折交叉验证法
DOI:10.3969/J.ISSN.1000-5137.2019.01.018
分类号:
基金项目:
Analysis of human body's fatigue testing model based on EEG signals
GU Xuanxuan, LI Luqun, DU Rudong
College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract:
For the detection of degree of human body's fatigue,we collected electroencephalographic(EEG) signals from the tested people.We eliminated the noise in the EEG signals by threshold wavelet transform technology,and extracted the eigenvalues in EEG signals.We analyzed the relationship between the fatigue and the eigenvalues,and built the mathematical model between EEG signals and the degree of fatigue.We verified the model by 10-fold cross-validation.The experimental results showed that the testing accuracy of the model reached up to 96%.
Key words:  electroencephalographic (EEG) signals  degree of fatigue  wavelet transform  mathematical model  10-fold cross-validation method