Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1299次   下载 1158 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于多特征分析的摔倒检测算法设计
高苗, 朱苏磊
上海师范大学 信息与机电工程学院, 上海 200234
摘要:
针对已有摔倒检测算法误检率高的缺点,提出了一种改进的摔倒检测算法.首先采用混合高斯模型对前景目标进行检测,然后进行中值滤波和形态学处理来提取前景目标.在人体宽高比和有效面积比的基础上,采用了质心的变化、方向角度和运动系数作为特征来判断人体是否摔倒.实验结果表明,和传统算法相比,该算法具有更高的准确度,识别度高,算法复杂度低,能有效地防止误判.
关键词:  摔倒检测  混合高斯模型  质心  方向角度  运动系数
DOI:10.3969/J.ISSN.1000-5137.2018.02.018
分类号:TP273.4
基金项目:
The design of fall detection algorithm based on multi-feature analysis
Gao Miao, Zhu Sulei
The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract:
In view of the shortcomings of high detection error rate of the existing fall detection algorithm,an improved fall detection algorithm is proposed.First,the Gaussian mixture model is used to detect the foreground object,and then median filtering and morphological processing are used to extract the foreground object.Based on the use of human aspect ratio and effective area ratio,the change of centroid,orientation angle and motion coefficient are taken as features to judge whether the human has fallen.Compared with traditional algorithnal,experimental results show that the proposed algorithm has higher accuracy,higher sensitivity,low algorithm complexity,and can effectively prevent misjudgment.
Key words:  fall detection  Gaussian mixture model  centroid  orientation angle  motion coefficient