Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1330次   下载 1189 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于张量分解的大规模多输入多输出天线预编码
陈文娟, 周小平, 王家南, 李莉, 杨哲
上海师范大学 信息与机电工程学院, 上海 200234
摘要:
提出基于张量分解的大规模多输入多输出(MIMO)天线预编码方案,利用张量分解对高维天线发送数据的降维,保持数据的低秩多维结构特征,获得更加有效的数据表示;同时,通过联合天线和用户信号的空域和时域的相关性,实现发射分集,克服大规模MIMO信道衰落和降低发射误码.通过仿真结果表明该方案适用于大规模MIMO系统.在相同条件下,与传统方案相比,误比特率更低.
关键词:  大规模多输入多输出  张量分解  低秩结构  发射分集
DOI:10.3969/J.ISSN.1000-5137.2018.02.013
分类号:TN929.5
基金项目:上海市自然科学基金项目(16ZR1424500)
Massive MIMO antenna precoding based on tensor decomposition
Chen Wenjuan, Zhou Xiaoping, Wang Jianan, Li Li, Yang Zhe
The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract:
A massive multiple input multiple output(MIMO) antenna precoding scheme based on tensor decomposition is proposed.The tensor decomposition is used to reduce the dimension of high-dimensional antennas,and the low-rank multidimensional structure characteristics of the data are maintained,so as to obtain more effective data representation.At the same time,by combining the correlation between the antenna and the airspace and time domain of users,to achieve transmit diversity,and to overcome massive MIMO channel fading and reduce transmission errors.The simulation results show that the proposed scheme is suitable for massive MIMO system.Under the same conditions,the bit error rate is lower than that of the traditional scheme.
Key words:  massive multiple input multiple output  tensor decomposition  low rank structure  transmit diversity