Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1465次   下载 1714 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于新指数基函数的有理二次三角Bézier曲线
吴蓓蓓1,2, 殷俊锋1, 金猛1, 李春景1
1.同济大学 数学科学学院, 上海 200092;2.上海电力学院 数理学院, 上海 200090
摘要:
通过在三角基函数中引入两个指数函数,构造了一种具有四个形状参数的有理二次三角Bézier曲线,它与有理二次Bézier曲线有着相类似的性质.给定控制顶点,该曲线可通过改变形状参数和权因子而调整形状.适当选取控制顶点、形状参数和权因子时,一些二次曲线可以被精确的表示.讨论了连接两条曲线所满足C0C1C2的连续条件,并给出了一些例子.
关键词:  二次三角基函数  有理二次三角Bézier曲线  形状参数  指数函数
DOI:10.3969/J.ISSN.100-5137.2017.03.009
分类号:
基金项目:This research was supported by Natural Science Foundation of China (11271289, 11502141);the Fundamental Research Funds for the Central Universities;the Key Program of NSFC-Guangdong Joint Fund of China (U1135003)
Rational quadratic trigonometric Bézier curve based on new basis with exponential functions
Wu Beibei1,2, Yin Junfeng1, Li Chunjing1, Jin Meng1
1.School of Mathematical Science, Tongji University, Shanghai 200092, China;2.School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
Abstract:
We construct a rational quadratic trigonometric Bézier curve with four shape parameters by introducing two exponential functions into the trigonometric basis functions in this paper. It has the similar properties as the rational quadratic Bézier curve. For given control points, the shape of the curve can be flexibly adjusted by changing the shape parameters and the weight. Some conics can be exactly represented when the control points, the shape parameters and the weight are chosen appropriately. The C0, C1 and C2 continuous conditions for joining two constructed curves are discussed. Some examples are given.
Key words:  quadratic trigonometric basis functions  rational quadratic trigonometric Bézier curve  shape parameters  exponential functions