Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1695次   下载 2222 本文二维码信息
码上扫一扫!
分享到: 微信 更多
上海市大型公共建筑能耗的贝叶斯统计分析
徐鹏涛, 刘吉彩, 郑鹭, 岳荣先
上海师范大学 数理学院, 上海 200234
摘要:
在建筑能耗的计量过程中,积累了大量的实时能耗数据.这些数据的特点是数量大、噪声大,存在缺失和测量误差等.如何分析和应用如此海量数据,是一个极具挑战性的问题.以2015年上海市大型建筑的电耗数据为研究对象,通过建立多层贝叶斯模型,对各类型大型建筑的月平均单耗、年平均单耗进行估计.该结果将可以帮助政府监管部门对建筑节能工作进行有效评价.
关键词:  大型公共建筑  多层贝叶斯模型  平均单耗估计  MCMC抽样
DOI:10.3969/J.ISSN.100-5137.2017.02.001
分类号:
基金项目:上海市科学技术委员会科研计划项目(14DZ201902)
Bayesian statistical analysis on energy for consumption of large-scale public buildings in shanghai
Xu Pengtao, Liu Jicai, Zheng Lu, Yue Rongxian
College of Mathematics and Science, Shanghai Normal University, Shanghai 200234, China
Abstract:
In the process of measuring the power consumed in buildings,massive quantity of real-time energy consumption data have been accumulated.Salient features of these data include large samples,noise accumulations and the presence of measurement errors,etc.Thus,how to analyze and apply these massive data becomes a very challengeable problem.In this paper,based on the dataset which include the consumption of large-scale public buildings in Shanghai for 2015,we establish a hierarchical Bayesian model to estimate the average monthly consumption and the average annual consumption of large public-scale buildings in 2015.The results will help government regulators to conduct effective evaluation on energy saving for buildings.
Key words:  large-scale public buildings  Bayesian hierarchical model  estimation of the average consumption  MCMC sampling