Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1225次   下载 1324 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种应用于文本相关说话人确认的L-向量表示和改进的余弦距离核函数
李为1, 游寒旭1, 朱杰1, 陈宁2
1.上海交通大学;2.华东理工大学
摘要:
提出了一种用于文本相关说说话人确认技术的i-向量提取方法和L-向量表示.一段用于注册或识别的语音可以用i-向量和L-向量联合表示.同时提出了一种改进的用于支持向量机(SVM)后端分类的核函数,改进的核函数可以同时区分说话人身份的差异和文本内容的差异.在RSR 2015语料集合1和集合2上验证系统的性能,实验结果显示改进的算法相对于传统的i-向量系统的基线能提高至多30%的识别率.
关键词:  文本相关说话人识别  i-向量  L-向量  余弦核函数
DOI:
分类号:
基金项目:the National Natural Science Foundation of China (NSFC) under Grant (61271349,61371147,11433002),and Shanghai Jiao Tong University joint research fund for Biomedical Engineering under (YG2012ZD04)
A novel L-vector representation and improved cosine distance kernel for Text-dependent Speaker Verification
LI Wei1, YOU Hanxu1, ZHU Jie1, CHEN Ning2
1.School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University;2.School of Information Science and Engineering,East China University of Science and Technology
Abstract:
A text-dependent i-vector extraction scheme and a lexicon-based binary vector (L-vector) representation are proposed to improve the performance of text-dependent speaker verification.An utterance used for enrollment or test is represented by these two vectors.An improved cosine distance kernel combining i-vector and L-vector is constructed to discriminate both speaker identity and lexical (or text) diversity with back-end support vector machine(SVM).Experiments are conducted on RSR 2015 Corpus part 1 and part 2.The results indicate that at most 30% improvement can be obtained compared with traditional i-vector baseline.
Key words:  text-dependent speaker verification  i-vector  L-vector  cosine distance kernel