Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1424次   下载 2356 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Rosenbrock方法求解多延时微分方程组的GPmL-稳定性
陆志雯
上海理工大学
摘要:
研究了用Rosenbrock方法求解多延时微分方程组数值解的稳定性.Rosenbrock方法是求解刚性常微分方程的有效方法,基于Lagrange插值,借助于理论解渐近稳定的条件,对于线型方程组模型,分析了Rosenbrock方法的GPmL-稳定性,并证明了用Rosenbrock方法数值求解多延时微分方程组是GPmL-稳定的当且仅当它是L-稳定的.
关键词:  延时微分方程组  GPmL-稳定性  Rosenbrock方法
DOI:
分类号:
基金项目:
GPmL-stability of the Rosenbrock methods for the systems of differential equations with many delays
LU Zhiwen
School of Science,University of Shanghai for Science and Technology
Abstract:
This paper deals with the stability analysis of the Rosenbrock methods for the numerical solutions of the systems of differential equations with many delays.The GPmL-stability behavior of the Rosenbrock methods is analyzed for the solutions of linear test equations.We show that the Rosenbrock methods are GPmL-stable if and only if they are L-stable.
Key words:  delay differential equation  GPmL-stability  Rosenbrock method