Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1176次   下载 2170 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一维双极量子漂移-扩散方程稳态解的存在性和经典极限
杨 婷, 黎野平
上海师范大学
摘要:
研究了来自于半导体器件和等离子体中的一维双极量子漂移-扩散模型的稳态解.在有合适边界条件的有界区域里,先利用Schauder不动点定理和能量估计的技巧,证明一维双极量子漂移-扩散模型的稳态解的存在性和唯一性;其次,研究双极量子漂移-扩散模型的稳态解的经典极限,即当普朗克常数ε趋于零时,量子漂移-扩散模型的稳态解趋向于经典漂移-扩散模型的稳态解.
关键词:  存在性  唯一性  经典极限
DOI:
分类号:
基金项目:
Existence and classical limit of stationary solutions to a one dimensional bipolar quantum drift diffusion equation
YANG Ting, LI Yeping
College of Mathematics and Sciences,Shanghai Normal University
Abstract:
We study the stationary solutions of a one-dimensional bipolar quantum drift-diffusion model from semiconductor devices and plasmas. In a bounded interval supplemented by the proper boundary conditions,we first show the existence and uniqueness of the stationary solutions to the one-dimensional bipolar quantum drift-diffusion model. The proof can be completed by the Schauder fixed-point principle and the careful energy estimates. Then,we study the classical limit of the stationary solutions to the bipolar quantum drift-diffusion model. Namely,we show that the stationary solution to the quantum drift-diffusion model approaches that to the drift-diffusion model as the scaled Planck constant ε tends to zero.
Key words:  existence  uniqueness  classical limit