Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 639次   下载 962  
分享到: 微信 更多
Banach空间中Daugavet算子方程的解的存在性
曾六川1
上海师范大学数学科学学院
摘要:
定义了两种子:(Ⅰ)型算子与(Ⅱ)型算子,证明了下列定理,若Banach空间X上线性连续算子T:X→X是(Ⅰ)型算子或(Ⅱ)型算子,则T满足Daugavet方程‖I+T‖=1+‖T‖的充要条件是算子T的范数‖T‖是T的特征值。另一方面,给出了该结果的应用。例如,由此断言,弱局部一致凸Banach空间X上紧算子T:X→X满足Daugavet方程的充要条件是范数‖T‖的T的特征值。
关键词:  巴拿赫空间  线性连续算子  存在性
DOI:
分类号:
基金项目:
Abstract:
Key words: