摘要: |
定义了两种子:(Ⅰ)型算子与(Ⅱ)型算子,证明了下列定理,若Banach空间X上线性连续算子T:X→X是(Ⅰ)型算子或(Ⅱ)型算子,则T满足Daugavet方程‖I+T‖=1+‖T‖的充要条件是算子T的范数‖T‖是T的特征值。另一方面,给出了该结果的应用。例如,由此断言,弱局部一致凸Banach空间X上紧算子T:X→X满足Daugavet方程的充要条件是范数‖T‖的T的特征值。 |
关键词: 巴拿赫空间 线性连续算子 存在性 |
DOI: |
分类号: |
基金项目: |
|
|
|
Abstract: |
|
Key words: |