快速检索:      
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 880次   下载 769 本文二维码信息
码上扫一扫!
分享到: 微信 更多
具有长方系数矩阵的微分代数方程组数值解的渐近稳定性
孙乐平
上海师范大学 数理学院, 上海 200234
摘要:
研究了具有长方系数矩阵的微分代数方程组的数组稳定性.利用克罗尼克标准型将原系统等价转化,获得了线性多步法和龙格-库塔法求解系统时的渐近稳定性结果.
关键词:  长方系数矩阵  微分代数方程  渐近稳定  矩阵束  克罗尼克标准型
DOI:10.3969/J.ISSN.1000-5137.2021.03.002
分类号:O241.81
基金项目:The Scientific Computing Key Laboratory of Shanghai Normal University and the Shanghai Natural Science Foundation (15ZR1431200)
Asymptotic stability of linear multistep methods and Runge-Kutta methods for homogeneous differential-algebraic equations with rectangular coefficients
SUN Leping
Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
Abstract:
This paper is concerned with the asymptotic stability of numerical methods applied to linear differential-algebraic equations. The coefficient matrices of the system are constant rectangular matrices. We consider linear multistep methods and Runge-Kutta methods applied to the system. The stability results are established under Kronecker canonical form of the original system.
Key words:  rectangular coefficient matrix  differential-algebraic equations  asymptotic stability  pencil  Kronecker canonical form