摘要: |
粒子滤波可以用来处理非线性非高斯问题,而序列重要性重采样算法能较好地解决粒子滤波中的粒子退化问题,由此将序列重要性重采样算法运用于MIMO时变信道进行半盲估计.实验结果表明:与使用传统的粒子滤波方法相比,基于序列重要性重采样算法的MIMO时变信道半盲估计方法均方误差和误码率降低,从而改善了接收端的符号检测性能. |
关键词: 序列重要性重采样算法 MIMO时变信道 半盲估计 粒子滤波 |
DOI: |
分类号: |
基金项目:国家自然科学基金项目(61101209);上海市自然科学基金项目(11ZR1426600) |
|
Semiblind estimation of MIMO time-varying channels based on sequential importance resampling algorithm |
SHI Danfeng, ZHANG Jing
|
College of Information,Mechanical and Electrical Engineering,Shanghai Normal University
|
Abstract: |
Particle filtering can be used to handle the non-liner and non-Gaussian problems,while the sequential importance resampling (SIR) algorithm can be better to solve the degeneracy phenomenon in particle filtering and be applied in the semiblind estimation of MIMO time-varying channels.Simulation results show that compared to traditional particle filtering method,the MIMO time-varying channel semiblind estimation method based on the sequential importance resampling algorithm reduces the Mean square error and Symbol error rate,consequently improves the symbol detection performance at the receiver side. |
Key words: the sequential importance resampling algorithm MIMO time-varying channels semiblind estimation particle filtering |