摘要: |
设1〈P≤2,X是实P-一致光滑的Banach空间,T:X→X是强增生算子.研究了用带误差的Ishikawa迭代程序:(xn+1)=(1-αn)xn+αn(f-Tyn+yn)+un, yn=(1-βn)xn+βn(f-Txn+xn)+υn,n≥0,)来逼近方程Tx=f解的问题,其中x0∈X,{un}{υn}是X中的有界序列,{αn},{βn},是[0,1]中的实数列.在无需假设条件αn→0之下,证明了,当T连续时,迭代序列{xn}强收敛到方程Tx=f的唯一解。 |
关键词: 强增生算子方程 带误差的Ishikawa迭代程序 P-一致光滑的Banach空间 |
DOI: |
分类号: |
基金项目:其它基金 |
|
|
|
Abstract: |
|
Key words: |