Rapid Retrieval:      
引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 922次   下载 1071 本文二维码信息
码上扫一扫!
分享到: 微信 更多
三阶非线性差分方程的轨道结构规律
泮志康, 李先义
浙江科技学院 理学院, 浙江 杭州 310023
摘要:
详细研究了一个三阶非线性差分方程的动力学性质.通过使用数学技巧,清晰而又完整地描绘了这一方程的轨道结构规律,发现此方程的任一非平凡解正负半环相继长度周期性地出现,且最小周期为7;在一个周期内这个规律是3+,2-,1+,1-.使用这个规律,证明了这个方程的正平衡点是全局渐近稳定的.
关键词:  非线性差分方程  非平凡解  环长  振动与非振动  全局渐近稳定性
DOI:10.3969/J.ISSN.1000-5137.2020.03.002
分类号:O175.13
基金项目:The Natural Science Foundation of China (10771094, 61473340); The Natural Science Foundation of Zhejiang University of Science and Technology (F701108G14); The Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province
Trajectory structure rule of a third-order nonlinear difference equation
PAN Zhikang, LI Xianyi
School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
Abstract:
In this paper the dynamics for a third-order nonlinear difference equation is considered in detail. By utilizing some beautiful mathematical skills, we describe the rule for the trajectory structure of this equation clearly and completely. The successive lengths of positive and negative semicycles of any nontrivial solutions of this equation occur periodically with prime period 7; the rule is 3+, 2-, 1+, 1- in a period. Using the rule, we verify that the positive equilibrium point of the equation is globally asymptotically stable.
Key words:  nonlinear difference equation  nontrivial solution  cycle length  oscillation and nonoscillation  global asymptotic stability