快速检索:      
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 15次   下载 4 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于帕累托多任务学习的DOA与TOA联合估计方法
陈耳其, 魏爽
上海师范大学 信息与机电工程学院, 上海 201418
摘要:
本文提出了一种基于帕累托多任务学习的到达角(DOA)与到达时间(TOA)联合估计方法,将传统的多任务学习转化为多目标优化问题进行求解.该方法设计了一个轻量化的多任务网络,将多径环境中的DOA与TOA联合估计问题建模为多任务、多标签的回归任务,引入受偏好向量引导的帕累托优化方法,将其进一步分解为一组具有不同权衡偏好的约束子问题,通过并行求解这些子问题,最终能够获得一组具有代表性的帕累托最优解.实验结果表明,与其他多任务学习方法相比,本文所提方法为DOA和TOA联合估计问题提供了一种高精度且灵活的解决方案.
关键词:  到达角(DOA)  到达时间(TOA)  联合估计  多任务学习  多任务网络  帕累托优化
DOI:10.20192/j.cnki.JSHNU(NS).2025.02.013
分类号:TP391.4
基金项目:
Joint DOA and TOA estimation method based on Pareto multi-task learning
CHEN Erqi, WEI Shuang
College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China
Abstract:
A joint estimation method for direction of arrival (DOA) and time of arrival (TOA) was proposed based on Pareto multi-task learning, which transformed the traditional multi-task learning problem into a multi-objective optimization problem for solution. A lightweight multi-task network was designed by the proposed method, modeling the joint DOA and TOA estimation problem in multi-path environments as a multi-task, multi-label regression task. Furtherly, a Pareto optimization method guided by preference vector was introduced, decomposing the problem into a set of sub-problems with different trade-off preferences. By solving these sub-problems in parallel, a set of representative Pareto-optimal solutions could be obtained. Experimental results showed that, compared to other multi-task learning methods, the proposed approach provided a higher accuracy and flexible solution for the joint DOA and TOA estimation problem.
Key words:  direction of arrival (DOA)  time of arrival (TOA)  joint estimation  multi-task learning  multi-task network  Pareto optimization