快速检索:      
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 258次   下载 282 本文二维码信息
码上扫一扫!
分享到: 微信 更多
对数凹函数熵的低维Busemann-Petty问题
马丹, 王亚龙
上海师范大学 数理学院, 上海 200234
摘要:
引入对数凹函数熵的Busemann-Petty问题,即对于2个Rn上的偶的对数凹函数fg, 且fg具有正的、有限的积分,假设∫RnHf(x)dx≤RnHg(x)dx对于任意i维子空间H均成立,是否能够得到Ent(f)≥Ent(g).得到了该问题的部分解答, 为解决凸体上的低维Busemann-Petty问题提供了一种新的途径.
关键词:  低维Busemann-Petty问题  对数凹函数  i-相交体  i-相交函数  熵函数
DOI:10.3969/J.ISSN.1000-5137.2023.03.004
分类号:O186.5
基金项目:
The lower dimensional Busemann-Petty problem on entropy of log-concave functions
MA Dan, WANG Yalong
Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
Abstract:
In this paper, we introduce the lower dimensional Busemann-Petty problem on the entropy of log-concave functions: for two even log-concave functions f and g with positive and finite integrals in Rn, if ∫RnHf(x)dx is smaller than RnHg(x)dx for every i-dimensional subspace H, whether the entropy of f is larger than the entropy of g? Furthermore, partial answers to this problem are given, which might provide a new path to study the long-standing lower dimensional Busemann-Petty problem on convex bodies.
Key words:  lower dimensional Busemann-Petty problem  log-concave functions  i-intersection bodies  i-intersection functions  entropy