摘要: |
代数簇的陈省身类不等式研究(也称为代数簇的地理学问题)是代数几何中的一个重要研究课题, 其中重要的不等式包括著名的Miyaoka-Yau不等式和Noether不等式等.主要研究完全交代数簇的陈类不等式, 通过余切丛的正合列计算得到完全交代数簇陈类的公式, 具体给出了四维完全交代数簇的陈类计算公式,并建立了四维完全交代数簇陈类的一些不等式. |
关键词: 陈省身类 完全交代数簇 微分层 |
DOI:10.3969/J.ISSN.1000-5137.2022.03.020 |
分类号:O187.2 |
基金项目:The National Natural Science Foundation of China (11771294) |
|
The Chern classes of complete intersection varieties |
LIU Lifeng, OUYANG Yangyang, SUN Hao, ZHOU Qian
|
Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
|
Abstract: |
The study of inequalities of Chern classes of varieties (also known as the geographical problem of varieties) is an important topic in algebraic geometry. The important inequalities include the famous Miyaoka-Yau inequality and the Noether inequality. Mainly study the Chern classes of complete intersection varieties. We obtain the Chern classes of the complete intersection varieties by the exact sequences of cotangent bundles, and establish some inequalities of the Chern classes of four-dimensional complete intersection varieties. |
Key words: Chern classes complete intersection variety sheaves of differentials |