快速检索:      
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 592次   下载 611 本文二维码信息
码上扫一扫!
分享到: 微信 更多
哈密顿路径的饱和数
丁天平, 晋亚磊, 张茜
上海师范大学 数理学院, 上海 200234
摘要:
给定一个图$F$, 如果图$G$中不包含$F$,且在$G$中添加图$G$的补图$\overline{G}$的任意一条边$e$后得到的图$G+e$中包含$F$, 则称图$G$为$F$-饱和图. 设sat($n,F$)=min{|$E(G)$|:|$V(G)$|=$n$,$G$是$F$-饱和图. 证明了当$n\in K=\{34,35,36,37,44,45,52,53\}$时都有sat($n,P_{n}$)=$\left\lceil \frac{3n-2}{2} \right\rceil$, 并给出边数最少的哈密顿路径饱和图的一种构造方法.
关键词:  饱和图  饱和数  极值图  哈密顿路径
DOI:10.3969/J.ISSN.1000-5137.2022.03.009
分类号:O241
基金项目:国家自然科学基金面上项目(11971319)
On the saturation number of Hamiltonian path
DING Tianping, JIN Yalei, ZHANG Qian
Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
Abstract:
Let $F$ be a graph and graph $G$ is said to be $F$-saturated if $G$ is $F$-free.However, for any edge $e\in E(\overline{G})$, $G+e$ contains $F$.Let sat($n,F$)= min{|$E(G)$|:|$V(G)$|=$n$ and $G$ is $F$-saturated}. We will show that there exists sat($n,P_{n}$)=$\left\lceil \frac{3n-2}{2} \right\rceil$,where $n\in K=\{34,35,36,37,44,45,52,53\}$, and we will construct a group of hamiltonian path saturated graphs with the smallest size of order $n$, for $n\geq 22$.
Key words:  saturated graph  saturation number  extremum graph  Hamiltonian path