摘要: |
考虑无理函数$f(x) = \sqrt {{x^3} + d{x^2}} $,对任意$x \in R$,若对任意$n \in N,{f^n}(x)$有定义,则$\mathop {\lim }\limits_{n \to \infty } {f^n}(x)$为+∞或为某不动点,并详细讨论了该性质. |
关键词: 无理函数 吸引不动点 轨道 极限 |
DOI:10.3969/J.ISSN.1000-5137.2022.03.005 |
分类号:O19 |
基金项目:国家自然科学基金(2071018) |
|
Dynamical system characterization of one kind of irrational functions |
WANG Xiaoji, SU Xiaomin, HE Baolin
|
Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China
|
Abstract: |
Consider irrational functions $f(x) = \sqrt {{x^3} + d{x^2}} $, for any $x \in R$, if for any $n \in N,{f^n}(x)$ is defined, then $\mathop {\lim }\limits_{n \to \infty } {f^n}(x)$ is +∞ or a fixed point, and study this property in details. |
Key words: irrational function attracting fixed point orbit limit |