快速检索:      
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 905次   下载 1085 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于CNN的超分辨率信道冲激响应室内指纹定位算法
罗开文, 俞晖
上海交通大学 电子信息与电气工程学院, 上海 200240
摘要:
针对室内环境中多径效应影响定位精度的问题,提出了一种基于卷积神经网络(CNN)的室内定位(PI-CNN)算法.以多重信号分类(MUSIC)算法处理后的信道状态信息(CSI)作为特征图像,基于室内环境中不同位置点具有独特多径信息的特点,利用各收发天线间所形成的子信道信息,获得具有更高时间分辨率的多径到达时间,将获取的伪谱信息组成伪谱图像,生成指纹库,再利用CNN进行训练和分类处理.仿真实验证明,在室内环境存在轻微扰动的情况下,该算法具有较好的抗干扰能力.
关键词:  深度卷积神经网络(CNN)  多重信号分类(MUSIC)算法  信道状态信息(CSI)  指纹定位
DOI:10.3969/J.ISSN.1000-5137.2021.01.013
分类号:TN929.5
基金项目:
CNN-based super-resolution channel impulse response indoor fingerprint location algorithm
LUO Kaiwen, YU Hui
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:
Aiming at the problem that the multipath effect in the indoor environment affected the positioning accuracy, based on a deep convolutional neural network(CNN), pseudo spectral image-CNN(PI-CNN)algorithm was proposed in this paper. Using channel state information processed by multiple signal classification(MUSIC)algorithm as a feature image, based on the unique multipath information of different locations in the indoor environment,the sub-channel information formed between the transceiver antennas was utilized to process the channel state information(CSI)to obtain the multipath arrival time with higher time resolution. The pseudo-spectral information of all antennas at the same sampling point was constructed into pseudo-spectral images to generate a fingerprint library which were used to train the CNN. The simulation experiments showed that the PI-CNN algorithm performed well when dealing with slight disturbance in the indoor environment.
Key words:  deep convolutional neural network(CNN)  multiple signal classification(MUSIC)algorithm  channel state information(CSI)  fingerprint location