摘要: |
为了避免随机选取初始聚类中心点的缺陷,利用最大最小距离的方法确定初始聚类中心点.实验结果表明,和传统的模糊C均值聚类(FCM)算法相比,所提聚类算法具有较高的稳定性和准确性,所分割的胼胝体图像边缘信息更加清晰. |
关键词: 模糊C均值聚类(FCM) 最大最小距离 初始聚类中心 胼胝体 |
DOI:10.3969/J.ISSN.1000-5137.2018.04.013 |
分类号:TP391 |
基金项目:国家自然科学基金(61373004);上海师范大学校级基金(A700115001005,Sk201220) |
|
DTI image segmentation based on the improved fuzzy C-means clustering |
Fang Bowen, Zhang Xiangfen, Ma Yan, Li Chuanjiang, Zhang Yuping, Yang Yanqin
|
The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
|
Abstract: |
In order to avoid the shortcomings of selecting initial clustering center points randomly,we use the principle of maximum and minimum distance to determine the initial clustering center points.Compared with traditional fuzzy C-means clustering (FCM)algorithm.The experimental results show that the accuracy and stability of improved FCM algorithm has been improved,and corpus callosum edge information is clearer. |
Key words: fuzzy C-means clustering (FCM) maximum and minimum distance initial clustering center corpus callosum |