快速检索:      
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1370次   下载 1529 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于加权极速学习机室内高动态环境的定位算法
周世悦, 张静
上海师范大学 信息与机电工程学院, 上海 200234
摘要:
随着人们对室内基于位置服务的需求越来越大,室内定位的研究变得越来越重要.Wi-Fi由于其传输距离适中,在智慧城市发展的推动下,热点的覆盖也非常多.因此基于Wi-Fi的定位技术成为众多室内定位技术中最具有可行性的.面对室内无线环境高动态变化的情况,提出了基于加权极速学习机(W-ELM)的定位方法,实验证明该方法能够有效提高定位精度.
关键词:  室内定位  高动态环境  加权极速学习机
DOI:10.3969/J.ISSN.100-5137.2017.02.006
分类号:
基金项目:
Indoor localization algorithm in high dynamic environment based on W-ELM
Zhou Shiyue, Zhang Jing
College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
Abstract:
With increasing needs of people on the indoor location-based services,indoor localization research becomes more and more important.With the developing of smart city,Wi-Fi is getting more popular than before because of its moderate transmission distance.Thus,Wi-Fi based location method is the most feasible technology among many other types of indoor location methods.For the problem of signal changes dynamically in indoor environment,we proposed a weighted extreme learning machine(W-ELM)-based indoor localization algorithm to build a stable model,and experiment results show that this method can effectively improve the positioning accuracy.
Key words:  indoor localization  high dynamic environment  weighted extreme learning machine