快速检索:      
引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1176次   下载 2442 本文二维码信息
码上扫一扫!
分享到: 微信 更多
计算不变密度的一种二次样条最大熵方法
丁玖, UPADHYAY Tulsi
南密西西比大学
摘要:
用二次样条函数来数值逼近对应于非奇异变换的Frobenius-Perron算子的不变密度. 所提出的方法消除了使用多项式函数的最大熵方法中出现的坏条件性. 只要不变密度有足够的光滑度, 由于算法的高阶收敛速率, 随着矩量函数个数的增加, 数值计算的精度会迅速增加. 给出的数值例子验证了算法收敛速度的理论分析.
关键词:  Frobenius-Perron算子  不变密度  最大熵  样条函数
DOI:
分类号:
基金项目:
A quadratic spline maximum entropy method for the computation of invariant densities
DING Jiu, UPADHYAY Tulsi
Department of Mathematics, The University of Southern Mississippi
Abstract:
The numerical recovery of an invariant density of the Frobenius-Perron operator corresponding to a nonsingular transformation is depicted by using quadratic spline functions. We implement a maximum entropy method to approximate the invariant density. The proposed method removes the ill-conditioning in the maximum entropy method, which arises by the use of polynomials. Due to the smoothness of the functions and a good convergence rate, the accuracy in the numerical calculation increases rapidly as the number of moment functions increases. The numerical results from the proposed method are supported by the theoretical analysis.
Key words:  Frobenius-Perron operator  invariant density  maximum entropy  spline function