摘要: |
对一类广义~Dullin-Gottwald-Holm~方程ut?α2uxxt+2ωux+βumux+γuxxx = α2(2uxuxx+uuxxx), 利用平面动力系统理论研究其行波解分岔.发现在一定参数条件下,方程具有不同种类的行波解,如孤波解,尖波波解和周期尖波解.结果表明,有界行波解在广义Dullin-Gottwald-Holm方程中得以保持 |
关键词: 广义Dullin-Gottwald-Holm方程 行波解 分叉 孤子 尖波 周期尖波解 |
DOI: |
分类号: |
基金项目: |
|
Bifurcations of traveling wave solutions of a generalized Dullin-Gottwald-Holm equation |
FAN Xinghua, LI Shasha
|
Faculty of Science, Jiangsu University
|
Abstract: |
The bifurcations of traveling wave solutions of a generalized Dullin-Gottwald-Holm equation ut?α2uxxt+2ωux+βumux+γuxxx = α2(2uxuxx+uuxxx) is studied by using the method of planar dynamical systems. Different kinds of traveling wave solutions, such as the solitary wave solution, the peakon wave solution and the periodic cusp wave solution are found to exist under certain parameter conditions. Results show that types of bounded traveling wave solutions are kept in the generalized Dullin-Gottwald-Holm equation. |
Key words: generalized Dullin-Gottwald-Holm equation traveling wave solution bifurcation soliton peakon periodic cusp solution |