摘要: |
运用两步Runge-Kutta方法求解广义中立型延时微分代数方程的渐近稳定性.首先对GNDDAEs系统进行了介绍Ax(′t)+Bx(t)+Cx(′tτ)+Dx(tτ)=0,这里x(t)=(x1(t),x2(t),…,xd(t))T,x(tτ)=(x1(t-τ1),x2(t-2τ),…,xd(t-τd))T,然后通过系统方程的特征多项式讨论了它的解析解的稳定性,并得出了解析解渐近稳定所需满足的渐近稳定性条件;其次,介绍了两步Runge-Kutta方法,通过普通的实验方程得出两步方法渐近稳定所需要满足条件的稳 |
关键词: 渐进稳定性 中立型延迟微分代数方程 两步Runge-Kutta方法 |
DOI: |
分类号: |
基金项目:省部级基金 |
|
|
|
Abstract: |
|
Key words: |