摘要: |
讨论了用Runge-Kutta方法求解带有两个延迟常量的多延迟积分微分方程ddut=Lu(t)+M1u(t-τ1)+M2u(t-τ2)+K1∫t-tτ1u(θ)dθ+K2∫t-tτ2u(θ)dθ的数值稳定性,并给出了其渐进稳定的充分条件.这里的L,M1,M2,K1,K2都是复矩阵.特别当K1,K2=0时,亦可以得到相同的结论,即每一个A稳定的RK方法都可以证明其解的延迟独立稳定性. |
关键词: Runge-Kutta方法 多延迟积分微分方程 延迟独立稳定性 |
DOI: |
分类号: |
基金项目:国家级基金 |
|
|
|
Abstract: |
|
Key words: |